Surface & Interface Modeling
for Emerging Nanomaterials and Devices

Multiple Pathways of Dissociative Attachment: CH3Br on Si(100)-2×1

Ting Bin Lim †, Iain R. McNab †, John C. Polanyi *†,Hong Guo ‡, and Wei Ji ‡


Department of Chemistry and Institute of Optical Sciences, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
Department of Physics, McGill University, Rutherford Building, 3600 rue University, Montréal (Québec) PQ H3A 2T8, Canada

DOI:10.1021/ja201060z    Publication Date: June 22, 2011


We describe the dissociative attachment (DA) of methyl bromide to form chemisorbed CH3and Br on a Si(100)-2×1 surface at 270 K. The patterns of DA were studied experimentally by ultra-high vacuum scanning tunneling microscopy (STM) and interpreted by ab initio theory. The parent molecules were found to dissociate thermally by breaking the C–Br bond, attaching the resulting fragments CH3 and Br at adjacent Si-atom sites. The observed DA resulted in three distinct attachment geometries: inter-row (IR, 88%), inter-dimer (ID, 11%), and on-dimer (OD, 1%). Ab initio computation agreed in predicting these three DA reaction pathways, with yields decreasing down the series, in accord with experiment. The three computed physisorption geometries, each of which correlated with a preferred outcome, IR, ID, or OD, exhibited similar heats of adsorption, the choice of pathway being governed by the energy barriers to DA chemisorption predicted to increase along the series: EIR = 0.48 eV, EID = 0.57 eV, and EOD = 0.63 eV.


View: J. Am. Chem. Soc.  133, 11534-11539 (2011)     Local Copy

©2010- Wei Ji Research Group, Department of Physics, Renmin University of China (中国人民大学 物理学系 季威 研究组). Designed by lstar. All rights reserved.